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The asymptotic properties of attainable sets of singularly-perturbed linear autonomous control systems are investigated. It is 
shown that if an explicitly given linear scaling operator is applied to the attainable set, the resulting sets converge (as the small 
parameter tends to zero). © 1999 Elsevier Science Ltd. All rights reserved. 

We consider a singularly-perturbed linear control system with a small parameter e as a coefficient of 
the derivatives of the fast components of the state vector, over a finite time interval t ~ [0, T], and 
investigate the asymptotic behaviour of its attainable sets K(e, t) as e ~ 0. It has been proved [1] that 
if the system is stable with respect to the fast variables, then K(e, t) converges. For systems without slow 
variables the convergence has been proved [2] for the shapes of the attainable sets rather than for the 
attainable sets themselves (by the shape of a set we mean the entity of all its images under non-singular 
linear transformations). 

In the general case considered here, it is possible to indicate a matrix scaling function R(e, t) such 
that the product of this function and the attainable set K(e, t) tend to a limit as e --> 0, describing in 
this way the asymptotic properties of the attainable sets themselves. In the language of shapes (applicable 
only to systems such that their attainable sets are bodies), this means that the shapes of the attainable 
sets K(e, t) converge. 

1. STATEMENT OF THE P R O B L E M  

Consider a singularly-perturbed linear control system 

J: = Ax + By + Fu, x(O) = y(O) = 0 (1.1) 

Ep = Cx + Dy + Gu, t ~ [0, T] 

where x e Vx = R n, y ~ Vy = R m are the slow and fast components of the state vector, e > 0 is a small 
positive parameter, and the admissible control vectors u(t) belong at any time to a convex compact 
U C 1~ containing zero and are measurable functions of time. We assume that D is a non-singular matrix 
(which is essential) such that its pure imaginary eigenvalues are multiplicity free (this simplifies the form 
of the matrix F(e, t)). 

Let K(e, t) be an attainable set of system (1), that is, the set of all points of the space V = Vx @ Vy 
that the system can reach under an admissible control u(x), x ~ [0, t]. For any e, t, the set K(e, t) is a 
convex compact containing zero. 

Let So and $1 be sets in V. The Hausdorff distance between them is defined by 

P(So, S l ) = i n f { r : V s i  ~.Si 3s l_ i  eS l_ i : ] s  0 - s  I I < r ,  i = 0 , 1 }  

We will investigate the asymptotic behaviour K(e, t) with respect to the Hausdorff metric as 
e --> 0. 

2. SEPARATION OF THE FAST AND SLOW VARIABLES 

We make the following change of variables in system (1.1) 
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(Throughout, I stands either for the unit matrix of appropriate size or the corresponding identity 
operator.) This change of variables corresponds to the representation of the space as V = Vx (~ Vz. It 
brings system (1.1) to the form 

B x F 

II:tt i  ' o.  1 11, o< AI, x<0.:z.0, o <=. 
Al = A - BD-tC,  Ct = D-IC(A - BD-IC),  Dl(•) = D + D-1CB~ Gl(e) = G + D-ICF~. 

The coordinate transformation To brings the matrix of the system from the form 

[/c ::MI 
to 

.o 3 
and increases the order of the off-diagonal block with respect to e. Similar transformations can bring 
the matrix of the system to a form where the off-diagonal blocks are small to arbitrarily large order 
with respect to e. 

Indeed, suppose that in some coordinate system the matrix of the system takes the form 

A(e) dB(e) 
ekC(e) e-iD(e~[ (2.2) 

whereA, B, C, D are matrix polynomials with respect to e, D(0) is invertible and k I> 0, l I> 0. Consider 
the coordinate transformations with matrices 

1 H; X=B(O)D-'(O), Y=-D-'(O)C(O) 

Under these transformations, the matrix of system (2.2) takes a form similar to (2.2) with k replaced 
by k + 1 under the first transformation and l replaced by l + 1 under the second; all the functions remain 
polynomial in c, and the principal terms of the expansions of the off-diagonal blocks with respect to E, 
and the principal terms of the expansions of the off-diagonal blocks with respect to c are preserved. 

It is known [3] that, for all sufficiently small e, a coordinate transformation S(e) 

i:ll:s. .l:i 
exists which is close to the identity and reduces the matrix of system (2) to a matrix with zero off-diagonal 
blocks. It can be shown that S(e) is an analytic function and can be expressed as 

I 1 eX/(e) I[ X ( O ) = B D - I , y ( o ) = _ D - I C I  S(e)= eY(e) 

Thus, the coordinate transformation S(e) brings system (2) to the form 

U n na' ' 0 lU.NI   . I + u, p(O) = q(O) [ q [  ]1 0 I~-ID(~) q ~-IG2(E ) (2.3) 

where all functions are analytic, A(0) = A1, D(0) = D, F(0) = F -BD-1G, G2(0 ). This corresponds to 
a representation of the phase space as V = Vp @ Vq, such that Vp ~ Ix, and Vq ---> V z as e ~ 0. Thus, 
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a suitable choice of a coordinate system depending on e separates the slow and fast variables in 
the dynamics of the system, and the only connection between the two kinds of variables is now via the 
control. 

3. D E C O M P O S I T I O N  OF THE OPERATORS D AND D(s )  
INTO UNSTABLE,  N E U T R A L ,  AND STABLE C O M P O N E N T S ,  

AND THE C O R R E S P O N D I N G  D E C O M P O S I T I O N  OF THE SPACES 
OF THE FAST VARIABLES V z AND Vq 

Consider the operator in the space V z defined by the matrix D in z coordinates. Consider the 
decomposition of the space V z. 

f v; e v? e v; 

corresponding to the decomposition of D into the direct sum of unstable, neutral and stable operators 
in accordance with the signs of the real parts of their eigenvalues 

D=D+ ~ D O ~ D_ 

k(Di)=~,i, i = + , 0 , - ;  Re~,+>0, R eko=0 ,  R e k _ < 0  

In the spaces V / introduce the coordinates zi. We may assume without loss of generality, that z = col (z+, 
z0, z_). This assumption holds if the matrix D is block-diagonal with the matrices of the operators Di 
along the diagonal. This is always the case on applying the transformationy = H y  in system (1). 

The eigenvalues ~.(e) of the operator D(e) in the space Vq are continuous functions of e. We divide 
them into three families, according to their limiting values: ~.+(e) ~ ~.+, ~(e)  -~ k0, ~._(e) ~ ~._. Consider 
the representation of the space Vq 

vq =v/ vO v; 
corresponding to the direct-sum decomposition of the operator D(e) as 

D(£) = D+(e) ~ Do(g ) ~ D_(e), ~ , ( D i ( e ) )  = ~,i(g.), i = +, O, -- 

Since the matrices D and D(e), as well as the spaces V z and Vq, are close to each other when e is small, 
it follows that the same is true for the subspaces, that is 

Vi--4 Viz, i = +, O, _ 

as e ~ 0. In the spaces ~ we introduce coordinates ri close to zi, and in Vq we introduce coordinates 
r = col(r+, r0, r_). We use the variables col(p, r) in Eqs (2.3). The matrix Sl(e) of the coordinate 
transformation 

is analytic and close to the unit matrix. Equation (2.3) takes the form 

col (~b,/-+, ro, r-) = diag (A(e), I-'.-ID+ (e), e-ID0(e), e-ZD_(e))col (p, r+, r0, r._) 

+ col (F(e), e -j G(e))u (3.1) 

The function G(e) is analytic and G(0) = G. Thus, the variables in Eq. (3.1) are divided into slow, fast 
unstable, fast neutral and fast stable variables, interconnected only via the control. They are related to 
the variables x, z by an analytic matrix close to the unit matrix. 

4. I N T R O D U C T I O N  OF THE SCALING OPERATOR.  
C O N V E R G E N C E  OF SETS RELATED TO THE ATTAINABLE SETS 

We introduce a scaling operator R(e, t) as the direct sum of operators in the corresponding subspaces 
with respect to the space representation 
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v=v  v/ev° v; 

Rp eR,* eR° eR; 

R p = l ,  R+=exp(-l~-lD+(l~)t), R°r=el, R 7 = I  

(In general, if the eigenvalue ico k of the operator Do corresponds to a Jordan's block of size mk 
(k -- 1 . . . . .  N), then the matrix of the operator R ° must have the form 

/t ° = diag(R I ..... R~), R t = diag(E, e2 ..... e ''k ), k = 1 ..... N 

with respect to the basis, where the matrix of the operator Do has the Jordan normal form. It can be 
proved that all results stated below remain true for such an operator R °)  

Apply the sealing operator to the attainable set and consider the set Q(e, t) = R(8, OK(e, t) obtained. 
The set Q(e, t) is the range of the vector 

col (p, s) = R(E, t) col (p, r) 

col (p, s) = col(p, s+, So, s_) = diag (L exp(-8-1D+(8)t, el, I). To describe the asymptotic behaviour of 
K(e, t) we investigate that of the sets Q(8, t). We will prove that the sets Q(e, t) converge with respect 
to the Hausdorff  metric as 8 ~ 0, for any t e~0, T]. 

We need some more notation. Let V "  = V~ @ Vp, be the direct sum of the spaces of the slow and 
fast neutral variables. Denote by (.)+, (.)o, (.)_ the projections onto the subspaces Vr +, V °, Vr-, respectively, 
and denote by 17 and 17o the projections onto Vp and V°~ (both spaces and operators depend analytically 
on 8, though this dependence is not made explicit in the notation, for brevity). 

Theorem 1. For any t e [0, T] limits exist as 8 ~ 0 of the projections Q(8, t) onto the spaces V ,  + 
and V ° = V~ @ Vp 

lira Q/(e, t) = Q~ c V/, i = +, - ;  lim Qo(~, t) = Qo(t) c v ° ~ V x 
e--~O e--~O 

Proof. We begin with Q(e, t)_. We have 

=[tie exp D_(~) - s  (G(•)u(es))_ds (4.1) col (p, s)_ = s_ = r_ Jo 

ft le 
Q_(~, t) = ~o exp(D_(e)s)(G(e)U)_ds 

For sufficiently small 8, we have Re X_(8) < X < 0, whilst the set U of control vectors is bounded; 
hence ] exp(D_(e)s)(G(8)U)_ I < const exp (L~). Since the improper integral of the majorizing function 
is convergent, and for all s 

exp(D_(¢)s)(G(e)U)_ --> exp(D_s)(GU)_ as 8 --> 0 

it follows by Lebesgue's theorem that 

lim Q_.(E, t) = So exp(D_s)(GU)_ds = Q_ c V~ (4.2) 
¢--~0 

A similar proof  yields the convergence of Q(8, t)+. We have 

col (p, s)+ = s .  = exp ( -e- t  D. (e)t)r. = r' / ~ Jo exp(-D+(e)s)(G(e)u(es))+ds (4.3) 

so that 

lira Q~(¢, t) = ~o exp(-D+s)(GV)+ ds = Q, c V + (4.4) 
e-.-)0 

Finally, we consider the projection (Q(e, t))0. The set (K(e, t))o is the range of the vector col(p(8, t), 
So(e, t)), where 
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p(~, t)= ~ exp(A(E)s)F(e)u(t- s)ds 
0 

(4.5) 
t 

SO(E, t) = ~ exp(E-I Do(E)s)l'loG(E)u(t- s)ds 
0 

Let h and H~, t the support functions of the sets U and (Q(e, t))0. Fix a vector ~ in V and consider the 
corresponding value of H~, t 

H~,,(~)= sup (p*II~+sol'Io~)= 
(p, so)~Qo 

ffi So sup (u'F* (~) exp (A * (e)s)II~ + u'G" (e)l'lo exp (e-IDo (e)s)l'Io~)ds = 
/! 

= ~Jo ;e hCF*Ce)exp (A*(e)es)l'I~ + G' (E)I'I o exp (Oo(OS)noDds (4.6) 

(the asterisk stands for transposition). We may assume that the matrix D~(e) has the Jordan normal 
form (with respect to a suitable basis of the space V~r). Since the eigenvalues of D0 are distinct, the same 
is true for D~(e), so the matrix D~(e) is diagonal. Its eigenvalues have the form 

~o(e)=¢t~(e)+itot(e)=eot ~ + ~ 2 ~  +.. .+i(tot +e¢o~ +~2to~ +...), k = l  ..... N 

Therefore, the matrix elements of exp(D~(e)s) have the form 

exp(~s(x~ + ~2s(x2 +...)exp(io3ts)exp(i(esto ~ + E2sto 2 +...)), k = 1 ..... N 

Hence we may treat the term h(. ) in (10) as a continuous function f o f  the variables ~lS . . . . .  o : ,  es, 
e, which is 2n-periodic with respect to the first N arguments. It can be approximated to within any 
accuracy by a finite trigonometric polynomial 

f(toIs .... tous, gs, ~) ~ ~. am(es, e)exp(is(m, to)) 
. e Z  h" 

Then 

I'1 1~ t i c  ,.t(~) = g f(co: .... CONS, ~, e)dS - Z -rile .Gz,V~ZJo Oam(~s, ~:)exp(/s(m, ~))ds 

If rn is such that (m, co) = 0 we have 

g / t  a.(es, e)exp(/s(m, to))ds = ~ am(t, E)dt-~ ~ am(t , O)dt as e ~ 0 

If m is such that (rn, co) ~ 0 we have 

~o/t a.(es, iz)exp(istx)ds = ~ am(t, ~)exp(ioctle)dt ~ 0 as e ~ 0 

by the Riemann-Lebesgue lemma. Thus, we see that for any 

H~,t(~)"~ S I E am(t, 0)dt as e -4 0 (4.7) 
. G Z  N , ( . .  ~ ) = 0  

Assertion. Convergence with respect to the Hausdorff metrices of a sequence of convex compacts Sn 
is equivalent to the pointwise convergence and uniform boundedness of their support functions Hn(~) 
on the sphere I ~ I = 1. 

Proof. The sequence Sn is convergent if and only if the sequence of support functions Hn(~) is uniformly 
convergent on I ~ I = 1. This follows from the fact that p(Sn, S) = max IHn(~) -H(~)I  [4]. Moreover, it 
is known that the support functions are uniformly convergent if and only if they are pointwise convergent 
and uniformly bounded. 
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Since the support functions of the convex sets (Q(e, t))0 are pointwise convergent and uniformly 
bounded (as is evident from (10)), it follows from the above assertion that the limit of the sets themselves 
does exist. 

lira QoCI~, t) = Qo(t) c V ° ~ V x 
p-C0 

The theorem is proved. 

Theorem 2. For any t ~ [0, Tithe set Q(e, t) converges as e ~ 0 to the direct product of its projections 
onto the spaces Vr +, Vr and V ~ = V~r @ Vp 

Q(e, t) ---> Q+(e, t) • Qo(e, t) • Q_(e, t) as e ~ 0 

Proof. It is obvious from (4.3), (4.5) and (4.1) that the controls substantially affect the projections 
col Co, s)i, i = +, 0---only at times close to zero, intermediate, and close to t, respectively. In a time 
[0, ~/(te)] system (3.1) may be steered to a point whose projection onto V+riS close to any point of (Q(e, 
t))+, then in a time [4(t~), t - x/(t~)] it may be steered to a point whose projection onto V ° is close to 
an]( point of (Q(e, t))0, affecting the first projection only slightly at the same time and then at a time [t 
- q(te), t] it may be steered to a point whose projection onto PT-r is close to any point (Q(e, t))_, changing 
the first two projections only slightly at the same time. But this also means that the set Q(e, t) is close 
to the direct product of its projections onto V+r, V ° and Vr. We also note thatp(e, t) and (s(e, t))0 depend 
on the control over the same time interval, so that (Q(e, t))0 is not close to the direct product of its 
projections I/K(e, t) and FIoK(~, t). 

Remark. Since K(e, t) = R-I(e, OK(e, t), it follows from Theorem 2 that K(e, t) can be approximated 
by a direct product of subsets of the spaces V, + V ° and VT, where the first increases exponentially, the 
third is constant, and the second increases along the space V°at a rate 1/e 

KCe, t) ~ exp (e-tD+ (~)t)Q+ (e, t) ~9 (I • e -j l)Qo(~, t) • Q. (e, t) 

The left- and right-hand sides of this equivalence are close together in the Banach-Mazur metric, to 
be defined below. 

Theorems 1 and 2 directly imply the following. 

Theorem 3. For any t ~ [0, T], the sets Q(e, t) tend to a limit which is the direct product of the 
subsets Q +, Qo(t), Q_ of the spaces Vz +, V~z @ Vx, V~z 

lim Q(E, t) = Q(t ) = Q~. ~ Qo(t) e (2_ 
g -..-~0 

Theorem 3 implies our main result. 

Theorem 4. Given a linear singularly-perturbed autonomous control system (1), the sets obtained 
by applying the linear operators R(e, t) defined above to the attainable sets K(e, t) tend to a limit as 
e---> 0 for anyt e [0,7] 

lim R(e, 0K(e, t) = Q(t) = Q+ @ Qo(t) ~ Q_ 
~.-~0 

and the limit set is uniquely determined by its projections given by formulae .(4.2), (4.4) and (4.7). 
Let us restate this result in the language of shapes of sets. By the shape ~ of a set f) we mean the 

entity of its images under non-singular linear transformations ~ = {Gtq : d e t G ,  0}. For sets containing 
a full-dimensional neighbourhood of zero (bodies), one can define the Banach-Mazur distance between 
them 

P(~t ,  122 ) = log (g(f~l, f~2 )g(~22, f~t )), g(f~j, ~22) = inf {g~>l; gf~i D ~ 2  } 

and the distance between their forms 

P(~t ,  D"z) = inf p(G~l ,  ~ 2 )  
d e t G . 0  
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This enables us to speak of the convergence of shapes. Assume that the pairs (Zl, El) and (D, G) are 
completely controllable. Then [5] system (1.1) is completely controllable for all sufficiently small e if 
the bounds on the control are dropped. Consequently, the sets K(e, t) are bodies. Since the shapes of 
the sets K(e, t) and R(e, OK(e, t) are identical, the result of Theorem 4 may be restated in the language 
of shapes of attainable sets as follows. 

Theorem 5. The shapes of the attainable sets of a singularly-perturbed autonomous control system 
(1) tend to a limit as e --+ 0 for any t ~ [0, 7] 

lim gCe, t) = K(t). 
~---~o 
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